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Abstract
Regular path queries (RPQs) are widely used on a graph whose answer is a set of
tuples of nodes connected by paths corresponding to a given regular expression. Tra-
ditional automata-based approach for evaluating RPQs is restricted in the explosion
of graph size, which makes graph searching take high cost (i.e. memory space and
response time). Recently, a cost-based optimization technique using rare labels has
been proved to be effective when it is applied to large graph. However, there is still
a room for improvement, because the rare labels in the graph and/or the query are
coarse information which could not guarantee the minimum searching cost all the
time. This is our motivation to find a new approach using fine-grained information
to estimate correctly the searching cost, which helps improving the performance of
RPQs evaluation. For example, by using estimated searching cost, we can decompose
an RPQ into small subqueries or separate multiple RPQs into small batch of queries in
an efficient way for parallelism evaluation. In this paper, we present a novel approach
for estimating the searching cost of RPQs on large graphs with cost functions based
on the combinations of the searching cost of unit-subqueries (i.e. every smallest pos-
sible query). We extensively evaluated our method on real-world datasets including
Alibaba, Yago, Freebase as well as synthetic datasets. Experimental results show that
our estimation method obtains high accuracy which is approximately 87% on aver-
age.Moreover, two comparisons with automata-based and rare label based approaches
demonstrate that our approach outperforms traditional ones.
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1 Introduction

A regular path query (RPQ) is introduced as a part of a query language for graph
databases, which are represented as graphs whose nodes are objects and edge labels
specify relationships between them (Mendelzon and Wood 1995). The answer of an
RPQ is a set of tuples of nodes which are connected with edge labels in some ways by
the paths specified by a regular language (Barceló et al. 2012; Calvanese et al. 1999;
Consens and Mendelzon 1990; Cruz et al. 1987; Libkin and Vrgoč 2012). RPQs have
been utilized inmany applications such as friends recommendations in social networks
(Konstas et al. 2009) and detecting signal pathways in protein interaction networks
(Scott et al. 2006). In such systems, databases could store extremely large graphs in
practice (i.e. hundreds of millions nodes and edges on Twitter social network (Yang
and Leskovec 2011), billions nodes/edges on Friendster social network (Yang and
Leskovec 2015)). Hence, evaluating an RPQ on such graphs takes high cost causing
substantial memory spaces and long response time.

A common approach for evaluating of RPQs is to use automata (Goldman and
Widom 1997). However, the drawback of the automata-based approach is that the
states of automaton are mapped onto the graph, which could cause long response time
in case of large graphs. To address this issue, there have been several studies focusing
on optimizing the searching cost of RPQs. The first technique is rewriting regular path
queries (Calvanese et al. 1999; Fernandez and Suciu 1998). In which, a given regular
expression is converted into another one that helps reducing search space by searching
only a portion of the data. But, this approach still has a limitation when dealing with
rewriting highly complex RPQs (e.g. nested RPQs with modifier recursion).

In recent years, a cost-based optimization technique using rare labels for RPQs eval-
uation has been proved to be effective when it is applied to large graphs (Koschmieder
andLeser 2012). The authors used a cost-based technique for determiningwhich labels
in the graph are considered to be rare, then they are used to decrease the search space.
However, the major drawback of this approach is that the algorithm depends on the
presence of rare labels and the number of rare labels in the graph and query. Therefore,
this technique could not guarantee the minimum searching cost all the time. There is
a room for improvement, in which estimating the searching cost of RPQs will open
the way to improve the performance of query evaluation. For instance, to reduce the
response time for evaluating an RPQ, we can split original RPQ into smaller sub-
queries, evaluate them parallelly and combine partial answers. In this case, estimating
the searching cost of each subquery is one of the key points to choose the split labels
which help to separate original RPQ in an efficient way. Such reasoning is the basis
of the approach we propose in this paper.

In this paper, we present a novel approach for estimating the searching cost of RPQs
on large graphs with cost functions based on the combinations of the searching cost
of unit-subqueries (i.e. every smallest possible query). In our method, we exploit unit-
subqueries to make a so-called USCM (Unit-Subquery Cost Matrix), which presents
the searching cost of the unit-subqueries. We provide cost functions based on USCM
to estimate the searching cost of an RPQ by decomposing the original query into a set
of unit-subqueries.

Our work makes the following contributions.
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– We define a USCM (Unit-Subquery Cost Matrix) according to the searching cost
of unit-subqueries. A unit-subquery can be a part of an RPQ, so we can use USCM
to estimate the searching cost of the RPQs.

– According toUSCM,wepropose cost functions for estimating the searching cost of
a givenRPQ.Threemain operators in anRPQ including concatenation, alternation,
and bounded Kleene operator, are considered to estimate the cost. Moreover, we
also discuss the estimation of highly complex RPQs.

– We present how our idea can be applied for improving the performance of RPQs
evaluation by reducing the searching cost in two applications: parallel evaluation
and multi-query optimization of RPQs.

– We conduct extensive experiments which show that our estimation method
obtains high accuracy which is approximately 87% on average. Moreover, two
comparisons with automata-based and rare label based approaches demonstrate
experimentally that our approach outperforms traditional ones in the aspect of
parallel RPQs evaluation.

The rest of this paper is organized as follows. Section 2 presents an overview of related
works. In Sect. 3, we present terms and definitions related to regular path queries.
Section 4 describes our method of estimating the searching cost of RPQs: a Unit-
Subquery Cost Matrix (USCM) and estimating the searching cost of RPQs by using
USCM. Section 5 discusses how our proposed approach can be applied for improving
the performance of RPQs evaluation. We conduct the experimental evaluation using
both real-world and synthetic graphs in Sect. 6. Section 7 concludes with a summary
and shows our future work.

2 Related work

Regular path queries evaluation on graph database has been studied intensively in
the literature (Barceló Baeza 2013; Goldman and Widom 1997; Grahne and Thomo
2000; Koschmieder and Leser 2012; Libkin and Vrgoč 2012; Trißl 2007; Yakovets
et al. 2016). The most common approach for evaluating an RPQ is based on automata.
A graph needs to be translated into an NFA (Nondeterministic Finite Automaton),
and a regular expression of an RPQ can be converted into an automaton before
being used it to match paths (Goldman and Widom 1997). However, the drawback
of the automata-based approach is that the states of automaton are mapped onto the
graph, which could cause long response time. Because of that, there have been several
studies focusing on optimization the searching cost of RPQs underlying automata-
based.

A common strategy for reducing the searching cost is query optimization. The
first technique is rewriting regular path queries (Calvanese et al. 1999; Fernandez
and Suciu 1998). Fernandez and Suciu (1998) presented two optimization techniques
based on graph schemas: (1) query pruning which used to rewrite a given regular
path expression into another one that helps reducing search space by searching only a
portion of the data; and (2) query rewriting using state extent which rewrites the query
into the one that starts traveling data from entry points deeper in the graph, instead of
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from the root which can avoid all navigation. Calvanese et al. (1999) proposed a view-
based query rewriting for RPQs in semi-structured data which guarantees to provide
only answers contained in those of the original query. Other rewriting approaches for
optimizing regular path queries are presented by Grahne and Thomo (2003). However,
the query rewriting techniques still have some limitations deal with highly complex
RPQs (e.g. nested RPQs with modifier recursion), which leads to state explosion
after converting the rewritten query to Deterministic Finite Automata (DFA) for graph
searching. Therefore, there have been several techniques also proposed for estimating
query size (Liu et al. 2014) or minimizing DFAs (Almeida and Zeitoun 2008; Liu et al.
2016).

Recently, cost-based optimizations of RPQs is proved to be effective to deal with
a large graph. Koschmieder and Leser (2012) used a cost-based technique for deter-
mining which labels to be considered rare. By using rare labels as start-, end-, and
way-points during traversal, this approach decreases the search space and get a more
efficient approach to the RPQ evaluation. However, the drawback of this approach is
that the algorithm depends on the presence of rare labels. In the case of poor rare labels
on the graph and the RPQs, or long queries, this approach still takes a high cost which
the complexity can reach O(n2), where n is the number of edges of the graph. We will
compare our proposed approach to rare label based approach in case of parallel RPQs
evaluation (for more details, see Sect. 6).

An area, where the efficiency of evaluation RPQs is important, is querying on
distributed graphs. A survey about the state of the art of evaluating queries on dis-
tributed graphs is presented by Kossmann (2000). Partial evaluation technique is used
to evaluate XPath queries on distributed XML data modeled as trees (Cong et al.
2007; Le Anh and Kiss 2007). Suciu (2002) presented a distributed query evaluation
approach on semi-structured data. Their algorithm takes a bounded complexity O(n2)
for the amount of data transferring via the network, where n is the total of cross-edges.
Fan et al. (2012) proposed efficient algorithms for answering three classes of reg-
ular reachability queries on distributed graphs based on a technique named partial
evaluation. However, it faces a communication bottleneck problem when assem-
bling all distributed partial query results. This problem is addressed in studies which
are proposed by Nguyen-Van et al. (2013) and Tung et al. (2013); therein, a large
amount of redundant data is detected and removed before assembling at the coordi-
nate site.

Despite many studies have focused on RPQs evaluation, to the best of our knowl-
edge, there have been only a few researches studying on estimating the searching cost
of RPQs and its effectiveness. Trißl and Leser (2010) provided functions to estimate
the sizes of result sets and the response times to evaluate reachability and path queries.
Davoust and Esfandiari (2016) presented estimation cost functions to provide strate-
gies for evaluating RPQs on distributed graphs. However, this work mainly focuses on
estimating the amount of data to be transferred via the network during evaluating an
RPQ. None of these works above provides estimation cost functions relying on oper-
ators in RPQs and connectivity of labels. In this paper, we propose a novel approach
for estimating the searching cost of RPQs on large graphs.
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3 Preliminaries

3.1 Graph data and regular path queries

We consider an edge-labeled directed graph G = (V , E , Σ), where V is a finite set of
nodes, Σ is a finite set of labels, and E ⊆ V ×Σ × V is a finite set of edges. An edge
(v, a, u) denotes a directed edge from node v to u labeled with a ∈ Σ .

A path ρ between nodes v0 and vk in G is a sequence

ρ = v0a0v1a1v2 . . . vk−1ak−1vk

such that each (vi , ai , vi+1), for 0 ≤ i < k, is an edge. The sequence of labels of a path
ρ, denoted L(ρ), is the string a0a1 . . . ak−1 ∈ Σ∗, where Σ∗ is a set of all possible
strings over the set of labels Σ . We also define the empty path as (v, ε, v) for each
v ∈ V ; the label of such a path is the empty string ε.

An RPQwith a regular expression R is a query of the form Q(R) = v
L(R)−→ u, where

L(R) ∈ Σ∗ is a regular language. So, a path ρ satisfies Q(R) on the graph G iff L(ρ)
∈ L(R), then ρ is an answer of Q(R). Here, R is a regular expression over Σ ,

R = ε | a | R ◦ R | R ∪ R | R[i, j],

where ε is an empty value; a is a label inΣ ; R◦R, R ∪ R, and R[i, j] denote concatena-
tion, alternation, and Kleene operator with bounded recursion [i, j], where i < j and
i, j ∈ N , respectively. Note that, in the syntax of regular expression we use a bounded
Kleene operator which bounds recursion with [i, j] instead of an unbounded Kleene
operator (e.g., *, +). This is motivated by the following three observations. Firstly, the
bounded Kleene operator is supported by graph query languages in practice, such as
Neo4j’s Cypher.1 Secondly, bounded recursion on regular path queries evaluation has
been studied in the literature (Fletcher et al. 2016). Finally, it is not difficult to find
that for any graph G, there exists a natural number n such that for every RPQ, Q(R),
there is a possible case that R∗ = R[0,n]. Similarly, other modifiers (+ and ?) can be
represented as follows: R+ = R[1,n] and R? = R[0,1]. While evaluating an RPQ with
unbounded recursion on a large graph is a non-trivial task.

Example 1 Figure 1a illustrates a graphGof a social network,where each node denotes
a person with his/her name and each edge represents the relationship between two
people, in which an edge is labeled by an element in a set of labels

Σ = {supervisor , colleague, f r iend,married, knows}.

In this graph, a regular path query Q(R) with

– R = suppervisor ◦ (colleague ∪ f r iend) finds all paths between any
supervisor(s) and colleagues or f r iends of his/her employees. In this case,

1 http://neo4j.com/docs/developer-manual/current/cypher/syntax/patterns/.
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(a)

(b)
Fig. 1 a An example of a social network as a directed edge-labeled graph; b a simple regular path query as
an automaton

the result includes three paths as follows.

Bill
supervisor−−−−−−→ Dan

colleague−−−−−→ Jun

Bill
supervisor−−−−−−→ Dan

f r iend−−−−→ Tea

Job
supervisor−−−−−−→ Ben

f r iend−−−−→ Son

– R = supervisor ◦ f r iend[1,2] ◦married finds all paths from any supervisor(s)
to the peoplewhomarriedwith f r iend or f r iend of f r iend of his/her employees.
In this case, the result includes two paths as follows.

Bill
supervisor−−−−−−→ Dan

f r iend−−−−→ Tea
f r iend−−−−→ Ken

married−−−−−→ Lee

Job
supervisor−−−−−−→ Ben

f r iend−−−−→ Son
married−−−−−→ Ann

3.2 Evaluation of an RPQ

Informally, the evaluation of an RPQ, Q(R), is to find all paths between pairs of
nodes in a graph G, such that the path from one node to the other matches a given
regular expression R. There are two types of RPQs which have been considered in
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the literature. In which, multi-source queries start a search at every node in the graph,
and single-source queries start a search at a single given start node. In this paper, we
consider estimating the searching cost of the multi-source queries. For better under-
standing of the estimation cost, we will describe the basic of RPQ evaluation using
automata-based technique.
Query automaton To process an RPQ, a regular expression can be converted into an
automaton then used to matching paths. We use a deterministic finite automata (DFA)
to represent query where the definition of DFA is like the study presented by Hopcroft
et al. (2006). That is, an RPQ, Q(R), is represented by an automaton AR which is a
5-tuple as the following:

AR = {Q,Σ,μ, q0, F},

where Q is a finite set of states, Σ is a finite set of labels (or symbols), μ is the
transition function, that is, μ: Q×Σ → Q, q0 is an initial (or start) state and q0 ∈ Q,
F is a set of terminal states and F ⊂ Q.
Query evaluation A well-known method for query evaluation (Hopcroft et al. 2006)
based on automata consists of the steps as follows:

– Build a finite automaton AR associated with the regular expression R. The initial
state of AR is q0, the accepted states are {qt }, where qt ∈ F .

– Consider graph G as an automaton AG with nodes as states, edges as transitions
and compute the cross-product of the automata AP = AR × AG .

– Apply any graph search algorithms such as breadth-first or depth-first to find all
pairs of nodes related by the regular path: search AP from all initial states (q0, vi )
to find all reachable accepted states (qt , v j ). All pairs of nodes (vi , v j ) are answers
to the RPQ.

The evaluation cost of the algorithm above consists of the cost of building the
query automaton, plus the cost of building and searching the product automaton. In
practice, the searching cost is the determinant of evaluation cost, especially in the case
of handling large graphs. We define the searching cost of an RPQ as the number of
traversed edges for searching paths corresponding to the RPQ.

Example 2 Suppose that we have a graph G as described in Example 1. We consider
the evaluation of an RPQ, Q(R), with

R = supervisor ◦ (colleague ∪ f r iend) ◦ married.

First, we convert Q(R) into finite automata AR as shown in Fig. 1b. Next, we look
up the start nodes from graph G. To be able to efficiently gather start nodes from
the graph, we assume that an index of the edge label also encodes their incoming and
outgoing nodes. This index gives us the list of start nodes of the label in the graph.
In this case, we have two start nodes {Bill, Job}. Starting from node Bill, there is a
node, Dan, matching with a state in AR (q1). From Dan, we find the nodes for next
searching. Here, four edges are traversed and two nodes, {Jun, T ea}, are considered
as the next starting nodes. Then, the searching process continues from these nodes,
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there are four more edges be traversed and only one node, T im, is matched with the
final state q4. Thus, for searching from Bill, the searching cost is nine. Similarly,
starting from Job, we have only one path satisfying Q(R),

Job
supervisor−−−−−−→ Ben

f r iend−−−−→ Son
married−−−−−→ Ann,

with the searching cost is five. As the result, we have the searching cost of Q(R) in
this case is fourteen. We are going to compare this the result with our estimation cost
in the next section.

4 Estimating the searching cost of RPQs

In this section, we present a novel approach for estimating the searching cost of RPQs.
Wefirst define aUnit-SubqueryCostMatrix (USCM).We then present how to estimate
the searching cost by using USCM.

4.1 Unit-Subquery Cost Matrix (USCM)

Intuitively, an RPQ is composed of multiple small subqueries with a few opera-
tors such as concatenation, alternation, and bounded Kleene. Then, we can define
a unit-subquery as the smallest subquery which is concatenated by two labels
from Σ ; the start label and the end label. For example, in the graph G of Fig.
1, a subquery Q(supervisor ◦ colleague) is a unit-subquery, where supervisor
is the start label and colleague is the end label. In practice, any query which
is defined as in Sect. 3.1 can be split into multiple unit-subqueries even if the
query which contains the Kleene operators with bounded recursion. For example,
the subquery Q((colleague ∪ f r iend) ◦ married) can be split into two unit-
subqueriesQ(colleague◦married) andQ( f r iend◦married);meanwhile, the query
Q(supervisor◦(colleague◦ f r iend)[1,2]) is composed of six unit-subqueries includ-
ing Q(supervisor ◦colleague), Q(supervisor ◦ f r iend), Q(colleague◦ f r iend),
Q(colleague ◦ colleague), Q( f r iend ◦ colleague), and Q( f r iend ◦ f r iend).

The cost of a unit-subquery is defined as the number of edges with the end label,
which is connected to the edges with the start label. For example, in the graph G of
Fig. 1, the cost of a subquery Q(supervisor ◦ colleague) is one because there is
only one edge (Dan, colleague, Jun) labeled with colleague, which is connected to
uni-directional edges labeled with supervisor .

With the definition of the cost of unit-subqueries, we can generate aUnit-Subquery
Cost Matrix (USCM) which represents the cost of all possible unit-subqueries from
Σ . An example of USCM is shown in Table 1. The size of USCM is n by n+ 1 where
n is the number of distinct labels in Σ . A cell (i, j) of USCM, except the last column
where j is n + 1, represents the cost of a unit-subquery, Q(aia j ), whose start label is
ai ∈ Σ and end label is a j . For clarity of presentation, we drop the explicit use of the
concatenation, and we use the symbol | for alternation operator in terms and equations,
only keep the symbols ◦ and ∪ in the examples (from now on). In the last column,
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Table 1 An example of Unit-Subquery Cost Matrix

Label: count supervisor colleague friend married knows Total

supervisor: 2 0 1 2 0 3 6

colleague: 1 0 0 0 1 1 2

friend: 4 0 0 2 3 3 8

married: 4 1 0 0 0 2 3

knows: 8 1 0 0 2 4 7

a cell (i, j) represents the cost of a unit-subquery Q(ai_), that is, the summation of
the costs of unit-subqueries whose start label is ai . Additionally, USCM contains the
number of edges with a given label (Count) like the first column of USCM.

Because the contents of USCM are constant in a given graph G, we can prepare
USCM for just one time unless the graph G is updated. The complexity of building
USCM is n × (|E | + |E |).

4.2 USCM-based estimating the searching cost

In this section, we propose cost functions for estimating the searching cost of an RPQ,
Q(R), in three main cases of regular expression R: (1) a simple regular expression
with concatenation operator; (2) a regular expression with alternation operator; and
(3) a regular expression with bounded Kleene operator. We also discuss estimating the
searching cost of highly complex RPQs.

4.2.1 An RPQwith concatenation

In our approach, the searching cost of an RPQ is estimated by splitting the original
RPQ into multiple unit-subqueries and gathering the cost of each successive unit-
subqueries.

Let us assume that there is an RPQ, Q(R), where R = a0a1 . . . an as a string
that is concatenated by (n + 1) labels ai ∈ Σ . Then, Q(R) can be split into
Q(a0a1), Q(a1a2), . . . , Q(an−1an), and the searching cost for Q(R) is defined as
summation of cost of each successive unit-subquery like Eq. 1.

CQ(R) =
n−1∑

i=0

CQ(ai ai+1) =
n−1∑

i=0

Ci (1)

For C0, the evaluation starts from the edge labeled with a0 and tries to find the path
to a1. Accordingly, C0 composed of the cost of finding the next search nodes and the
cost of searching a1. That is, C0 = δ(a0) + ξ(a0), where δ(ai ) is the number of edges
given label ai which is the Count value for the first column of USCM and ξ(ai ) is the
cost of Q(ai_) which is the value of the last column of USCM.

For Ci , where i > 0, we do not consider the searching cost for finding edges with
label ai , because this cost is already considered in the previous step Ci−1. So, for
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Ci , we only consider the searching cost for finding edges with label ai+1. However,
this cost is affected by the number of search nodes which are found in the previous
step(s). To consider this effect, we can calculate the probability of how many edges
labeled with ai related to the unit subquery Q(ai−1ai ) are found among the all the
edges labeled with ai , and apply to the searching cost to edges labeled with ai+1 from
edges labeled with ai . That is, Ci can be represented like Eq. 2, where μ(ai−1, ai ) is
the cost of unit-subquery Q(ai−1ai ), which is the first value of each cell of USCM.

Ci = μ(a0, a1)

δ(a1)
× · · · × μ(ai−1, ai )

δ(ai )
× ξ(ai ) (2)

Example 3 Suppose that we have a graph G as described in Example 1. An actual
situation as the following: for a marketing strategy in a company, the board of directors
wants to introduce products through all paths from the supervisors to people who are
married to friends of the employees in that company. A regular expression R which
represents that situation is R = supervisor ◦ f r iend ◦ married. Here, we do not
focus on evaluating this query but estimate the searching cost of Q(R). In this case,
the searching cost can be estimated as follows.

C0 = CQ(supervisor◦ f r iend)

= δ(supervisor) + ξ(supervisor) = 2 + 6 = 8

C1 = CQ( f r iend◦married)

= μ(supervisor , f r iend)

δ( f r iend)
× ξ( f r iend) = 2/4 × 8 = 4.

Thus, the total estimated cost is twelve. It is equal to the true cost of evaluating Q(R)

in the graph G by using automata-based approach.

4.2.2 An RPQwith alternation operator

We assume that an RPQ, Q(R), is defined by a regular expression,

R = a0 . . . ai−1(ai |ai+1)ai+2 . . . an,

where ai ∈ Σ . Herein, R has an alternation operator between ai and ai+1. In this case,
the original Q(R) can be split into three subqueries Q(a0 . . . ai−1), Q(ai−1(ai |ai+1)

ai+2), and Q(ai+2 . . . an). For the subqueries Q(a0 . . . ai−1) and Q(ai+2 . . . an), we
can estimate their cost by using our method in Sect. 4.2.1.

For evaluating Q(ai−1(ai |ai+1)ai+2), we need to consider two different steps:
Q(ai−1(ai |ai+1)) and Q((ai |ai+1)ai+2). In the first step, Q(ai−1(ai |ai+1)) can be
considered by two subqueries Q(ai−1ai ) and Q(ai−1ai+1). Here, evaluating both of
these subqueries starts from edges labeled with ai−1, and during a single evalua-
tion time, we can traverse the edges labeled with ai as well as ai+1. So, the cost of
Q(ai−1(ai |ai+1)) can be estimated by the cost of either Q(ai−1ai ) or Q(ai−1ai+1).
On the other hands, Q((ai |ai+1)ai+2) can be decomposed into Q(aiai+2) and
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Q(ai+1ai+2), and the evaluation process of these subqueries is different to each other.
So, CA, the estimated cost of Q(ai−1(ai |ai+1)ai+2), can be estimated by the summa-
tion of the costs of Q(ai−1ai ), Q(aiai+2), and Q(ai+1ai+2) like Eq. 3.

CA = CQ(ai−1ai ) + CQ(ai ai+2) + CQ(ai+1ai+2) (3)

Equation 3 can be represented as an explicit formula by two cases as the following:

– i = 1

CA = δ(a0) + ξ(a0) + μ(a0, a1)

δ(a1)
ξ(a1) + μ(a0, a2)

δ(a2)
ξ(a2) (4)

– i > 1

CA = μ(a0, a1)

δ(a1)
× · · · × μ(ai−2, ai−1)

δ(ai−1)

×
(

ξ(ai−1) + μ(ai−1, ai )

δ(ai )
ξ(ai ) + μ(ai−1, ai+1)

δ(ai+1)
ξ(ai+1)

) (5)

Example 4 We illustrate our idea of estimating searching cost in case of query has
alternation operator by an example. Inwhich, the regular expression R = supervisor◦
(colleague∪ f r iend) ◦married. By using Eq. 4, the searching cost of Q(R) can be
estimated as follows.

CQ(R) = CA = δ(supervisor) + ξ(supervisor)

+ μ(supervisor , colleague)

δ(colleague)
ξ(colleague)

+ μ(supervisor , f r iend)

δ( f r iend)
ξ( f r iend)

= 2 + 6 + (1/1) × 2 + (2/4) × 8 = 14

In this case, the total estimated cost is fourteen. It equals the true cost of evaluating
Q(R) in the graphG byusing automata-based approach aswementioned inExample 2.

4.2.3 An RPQwith bounded Kleene operator

Let us assume that there is an RPQ, Q(R), where

R = a0a1 . . . ak−1a
[i, j]
k ak+1 . . . an

with a bounded Kleene operator. To estimate the cost of Q(R), we can split this query
into three subqueries including

Q(a0 . . . ak−1), Q
(
ak−1a

[i, j]
k ak+1

)
, andQ(ak+1 . . . an),
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then the searching cost for Q(R) is defined as the summation of the cost of
each subquery. We can estimate the costs of the subqueries Q(a0 . . . ak−1) and
Q(ak+1 . . . an) by using the proposed method described in Sect. 4.2.1. The subquery
Q(ak−1a

[i, j]
k ak+1) is composed of the unit-subqueries: a Q(ak−1ak), ( j − 1) times

Q(akak), and a Q(akak+1). So, the estimated cost of Q(ak−1a
[i, j]
k ak+1),CK , is defined

as shown in Eq. 6.

CK = μ(a0, a1)

δ(a1)
× · · · × μ(ak−1, ak)

δ(ak)(
1 + μ(ak, ak)

δ(ak)
+ μ(ak, ak)

δ(ak)
× μ(ak, ak)

δ(ak)
+ · · ·

)
ξ(ak)

(6)

Let ω = μ(ak, ak)

δ(ak)
, ∀ω �=1, the estimated cost, CK , can be formalized as follows.

CK = μ(a0, a1)

δ(a1)
× · · · × μ(ak−1, ak)

δ(ak)
× ω j − 1

ω − 1
ξ(ak) (7)

Equation 7 shows that the cost of evaluating an RPQ does not depend on the lower
bound (i) of Kleene operator, but depends on the upper bound ( j) of Kleene operator.
That is, the high value of j will take a high searching cost of Q(R).

Example 5 In this example, we will estimate the searching cost of RPQ, Q(R), with
R = supervisor ◦ f r iend[1,3] ◦married. In this case,CQ(R) = C0+CK , withC0 =
δ(supervisor)+ξ(supervisor) = 2 + 6 = 8; andCK = μ(suppervisor , f r iend)

δ( f r iend)
×

ω3 − 1

ω − 1
ξ( f r iend), where ω = μ( f r iend, f r iend)

δ( f r iend)
= 2/4 = 0.5. So, CK = 2/4 ×

(0.53 − 1)/(0.5 − 1)) × 8 = 7. Finally, we have CQ(R) = 8 + 7 = 15. It is close to
true cost, sixteen, of evaluating Q(R) on graph G.

4.3 Estimating highly complex RPQs

Our approach is not only effective with simple RPQs but also highly complex
RPQs such as the query with a regular expression of the form R ◦ S[i, j] ◦ T or
R ◦ (S[i, j] ◦ T )[x,y] ◦ U , where R, S, T , and U are regular expressions, and i, j, x,
and y are natural numbers, in which i < j and x < y. To estimate the cost
of a complex RPQ, we first decompose such query into the queries containing at
least one of three cases of operators as described in Sect. 4.2. We then use USCM
to estimate the cost for decomposed queries. For example, an RPQ, Q(R), with
R = supervisor ◦ (colleague ∪ f r iend)[1,2] ◦ married can be decomposed into
two queries:

(1) supervisor ◦ colleague ◦ (colleague ∪ f r iend) ◦ married and
(2) supervisor ◦ f r iend ◦ (colleague ∪ f r iend) ◦ married.
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It is not difficult to estimate the searching cost of these queries by using our proposed
as presented above.

5 Applications

Our idea can be used for variations of the general RPQ problem, such as parallel
evaluation or multi-query optimization of RPQs. In this section, we show how our
proposed method can be applied for improving these two main RPQs problems.

Parallel evaluation of RPQs As we mentioned in the previous section, splitting an
RPQ into small subqueries by using rare labels, then evaluate them in parallel and
combined partial answers, have been proved to be effective when applying to large
graphs (Koschmieder and Leser 2012). However, this technique could not guarantee
the minimum searching cost all the time. Our proposed method of estimating the
searching cost of RPQ is one of the key points to improve the performance for parallel
evaluation of RPQs. To do this, we can follow the steps as below.
Step 1 Find all N possible sets of subqueries, S = {S1, S2, . . . , SN }, for a given
RPQ. For example, we can find three sets of subqueries for an RPQ, Q(R), with
R = knows ◦ supervisor ◦ colleague ◦ married as follows.
S1 = {knows ◦ supervisor; supervisor ◦ colleague ◦ married}
S2 = {knows ◦ supervisor ◦ colleague; colleague ◦ married}
S3 = {knows ◦ supervisor; supervisor ◦ colleague; colleague ◦ married}
Step 2 For each set of subqueries Si , 1 ≤ i ≤ N , estimate the searching cost of Si ,
which is defined as the maximum searching cost of the subqueries belong to Si .
Step 3 Compare the searching cost of all sets of subqueries in S to find out the set Si
which has the minimum searching cost.

Note that, in Step 1 above, we find all of the possible combinations of sequenced
labels, and it takes polynomial time. Here, we consider only the labels as the split
labels if it is not at the position of the labels with bounded Kleene operator or inside a
bracket of an alternation operator. After finding the set of subqueries in Step 3, each
subquery is evaluated on different CPU in parallel by using automata-based approach,
and the results are gathered for the answer of the original RPQ. We will evaluate the
efficiency of our proposed method applying on this problem in the next section.

Multi-query optimization of RPQs Consider a web-based public transportation system
like Naver Maps, in which users issue queries in the form of RPQs to find optimal
paths from their locations to the destinations. A large number of queries could be sent
to the system at the same time. For such system, the batch of queries is expected to be
evaluated efficiently in real-time manner. This problem is referred as the multi-query
optimization. Recently, a framework, called SWARMGUIDE, has been proposed by
Abul-Basher (2017) to optimize multiple regular path queries in graph databases. The
framework detects commonalities among the RPQs by using a subgraph isomorphism
technique, in order to find an optimal execution plan that is globally optimized over
the plan spaces of the constituent RPQs. This approach only exploits the structure of
RPQs, but does not exploit graph schemawhich could affect considerably the response
time of RPQs evaluation as presented in the previous section. A simple idea to improve
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Table 2 Summary of real-life
datasets

Dataset |V | |E | |Label |

Alibaba 52,050 340,775 649

Yago 1,756,958 3,615,249 13

Freebase 2,303,121 3,224,470 16

the performance of multi-query processing by using our proposed method is that (i)
estimate the searching cost of each query; (ii) divide the batch of queries into k buckets
(number of buckets depends on the system capacity) so that total estimated searching
cost of a bucket is close to each other; (iii) evaluate the buckets in parallel fashion
(e.g., multi-core CPUs or parallel on distributed systems).

6 Experimental evaluation

To evaluate the effectiveness of our proposed approach, we conducted twomain exper-
iments: the first one is to compare our estimated cost with the true cost which is the
number of traversed edges during evaluationRPQs by using automata-based approach,
and the other one is to compare our USCM-based approach with the automata-based
approach (called AUT) (Goldman andWidom 1997) and the threshold rare label based
approach (called TRL) (Koschmieder and Leser 2012) regarding the response time of
parallel RPQs evaluation on large graphs.

6.1 Evaluation settings

EnvironmentsOur experiments were conducted on a personal computer which has 3.5
GHz Intel Core i3, 4 CPU cores, and 8.0 GB of RAM. All algorithms are implemented
in Java.
Data and queries set We used three real-world graphs to verify the adaptability of
the proposed method. The first one is from a research on biology (called Alibaba),
the second one is called Yago dataset which is a semantic knowledge base, derived
from Wikipedia, WordNet, and GeoNames (Suchanek et al. 2007), and the last one is
Freebase dataset which provided by Bast et al. (2014). We summarized the properties
of real-world datasets inTable 2.Wealso generated synthetic graphswith various graph
size as well as average degree for the extensive evaluation. The details of dataset and
queries set are as the followings.

We usedAlibaba graph and the queries set given by previous research (Koschmieder
and Leser 2012). The graph is a network of protein–protein interactions which is used
regularly in biology systems, for instance, to discover protein functions and pathways
in biological processes (Zahiri et al. 2013). This graph has 52,050 nodes, 340,775
edges, and 649 labels. We analyzed 10,000 queries in the queries set and found the
following properties. The queries set has around 87% proportion of having simple
RPQs, 3% proportion of having nested RPQs without recursive modifiers, and 10%
proportion of having nested RPQs with recursive modifiers. For setting the queries set
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to be the same between our approach and the others, we replaced the modifiers (*, +,
?) by a fixed bounded recursion from 1 to 5.

Yago is a huge semantic knowledge base, extracted and combined entities and
facts from Wikipedias in different languages. Currently, to provide knowledge based
on the demand of users, Yago3 dataset (version 3 of Yago) is divided into specific
portions, and each portion is called a theme (Mahdisoltani et al. 2013). For example,
GEONAMES theme contains data of geographical entities and classes taken from
GeoNames; meanwhile, CORE theme has main entities of yago and the facts between
entities. To evaluate our proposed method, we extracted a knowledge graph from
CORE them of Yago. This graph has 1,756,958 nodes, 3,615,249 edges, and 13 labels.
Each node represents an entity such as a person, an organization, or a city; while, an
edge represents the relationship between two entities, and it is assigned by a label
as a fact (e.g., hasChild , isLeaderO f , isLocated In, etc.). We created a set of 30
queries with different length from 4 to 8, each has a sense in particular, which can
be used for querying on Yago dataset to get some knowledge. For instance, the query
with a regular expression R like

isMarriedT o ◦ is Poli ticianO f ◦ isLocated In ◦ hasCapital

is used to find out people who married to politicians living in the capital of a country.
This queries set has 10 queries for each type of queries as we presented above. In
which, the bounded Kleene operator has bounded recursion in the range from 1 to 5.

Freebase (Bollacker et al. 2008) is a large knowledge graph of the facts around
the world, which is developed by Metaweb Technologies company in 2007 and was
acquired by Google Inc. in 2010. This original dataset provides raw data dumped
in RDF (Resource Description Framework) triples and it has several issues like
name disambiguation and duplicate entities. We therefore sought to find a different
version of Freebase dataset which had solved the known major issues of the origi-
nal one. This new dataset is available to download from http://freebase-easy.cs.uni-
freiburg.de/dump (Bast et al. 2014). In this dataset, each triple is a fact in the form
of <subject> <predicate> <object>. It corresponds to an edge on the knowl-
edge graph, in which a<predicate> is considered as an edge-label. We extracted all
triples which have predicates representing the relationship between two entities and
ignored other ones. For instance, we used a triple <Ann Taylor> <Has Child>

<Christian Noel Davis>, but did not use <Ann Taylor> <Weight> <57.2>.
Finally, we obtained a Freebase graph with 2,303,121 nodes, 3,224,470 edges, and 16
labels. We also generated 30 queries with different length from 4 to 8 to evaluate our
method on this dataset.

To gainmuchdeeper understanding of our proposedmethod in the aspects of various
parameters such as graph size or average degree of graph, we generated the synthetic
graphswith various number of nodes and number of edges (formore details, see Tables
3 and 4) by using Gephi (Bastian et al. 2009). We used 15 distinct labels to annotate
edges for these graphs. The occurrence of labels follows the Zipfian distribution. Then,
wegenerated randomly1000RPQswith various lengths between6 and12.This queries
set has about 5% proportion of having the alternation and 30% proportion of having
the bounded Kleene operator with bounded recursion in the fixed range from 1 to 5.
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Table 3 Accuracy evaluation
with varied graph sizes

|V | |E| Average degree Accuracy

2000 38,142 19 87.62

4000 76,860 19 88.43

8000 152,245 19 89.02

16,000 306,806 19 88.70

32,000 615,047 19 89.18

64,000 1,216,584 19 88.56

Table 4 Accuracy evaluation
with varied average degrees

|V | |E| Average degree Accuracy

16,000 63, 540 4 75.12

16,000 128, 297 8 81.52

16,000 255, 578 16 88.00

16,000 513, 225 32 89.06

16,000 1, 024, 183 64 88.45

AlgorithmsToevaluate the accuracyof our estimationmethod,we reimplementedAUT
approach to measure the true cost, and measure the estimated cost by implementing
our proposed method. For each query in the queries set, the closeness between the

estimated cost, ei , and the true cost, ti , is calculated by the fraction
ei
ti

in the case of

ei ≤ ti , otherwise, it is
ti
ei
.

We also reimplemented AUT approach and the threshold TRL approach to compare
their response time with our USCM-based approach.

6.2 Experimental results

6.2.1 Accuracy of our estimation method

In order to evaluate the accuracy of our estimation method, we used three real-world
datasets:Alibaba graph,Yagograph, Freebase graph, and a synthetic graphwith 16,000
nodes and 306,806 edges. The queries set for each dataset is described in the previous
subsection. The results show that our estimationmethod obtained high accuracy which
is approximately 87% on average. Specifically, it is around 85%, 88%, 86%, and 89%
in the case of Alibaba, Yago, Freebase, and the synthetic graph, respectively. As an
example, Fig. 2 illustrates a comparison of the estimated cost and the true cost of 20
random queries on each dataset.We observed that the estimated cost is close to the true
cost, excepts some queries with high cost caused by the bounded Kleene operators.

Next, we evaluate the accuracy with varied graph size (|V| + |E|). We generated
synthetic graphs by varying the size and average degree of the graphs. In directed

graphs, the average degree is defined by the fraction
|E |
|V | . In the first case, we scale
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(a)

(b)

(c)

(d)

Fig. 2 Comparison of the true cost and the estimated cost. a #Query number on Alibaba graph, b #Query
number on Yago graph, c #Query number on Freebase graph, d #Query number on Synthetic graph

graph size from around 40K to 640K nodes and edges, but we keep the same average
degree for the graphs. As the results shown in Table 3, our estimation method obtained
high accuracy at most 89% for all varied size of the graphs. In another case, we
generated five synthetic graphs by fixing the number of nodes |V | = 16K and varying
the number of edges |E | from 64K to 1.0M. Consequently, the average degree of
the graphs is varied from 4 to 64. We observed that the estimation accuracy for the
graphs whose average degree is greater than or equal to 16, which is mostly around
89%, are higher than those in the cases of average degree of 4 and 8 (75.12% and
81.52%, respectively) as shown in Table 4. The results are reasonable because the
higher average degree of the graph is, the higher probability of a label connected to
anyone else, which helps to increase the estimation accuracy of our method, is.

Finally, we evaluate the impact of query path length on the estimation accuracy
of our proposed method. To do this, we generate randomly 3000 queries (contain
only concatenation operator) with varied length in the range from 3 to 8. Here, we
do not need to evaluate the accuracy of estimating the queries with length equalling 2
because their true costs are the exact cost of unit-subqueries in USCM. Thus, we have
6 different subsets of queries, and each has 500 queries. We evaluated the queries on
the synthetic graph with 16,000 of nodes and 306,806 of edges. Figure 3 shows that
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Fig. 3 Accuracy evaluation with varied query path length

Fig. 4 Comparing the response time of parallel RPQs evaluation on large graphs

the accuracy decreases marginally from 89% (at query length equalling 3) to 82% (at
query length equalling 8), which is still acceptable.

6.2.2 Efficiency of USCM-based parallel RPQs evaluation

We implemented our algorithm for parallel RPQs evaluation as described in Sect. 5. To
ensure the parallel evaluation of split subqueries, the split subqueries are evaluated on
different CPU and the results are gathered for the answer of an RPQ. To measure the
response time, we get the timestamp difference between issuing an RPQ and getting
the answer of an RPQ. That is, the response time of USCM-based approach includes
the time for splitting the RPQ and combining partial answers. Figure 4 illustrates the
average response times of three different approaches. We observed that our USCM-
based parallel RPQs evaluation outperformsAUT. That is, using estimated cost of RPQ
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Fig. 5 Evaluating the response time of parallel answering RPQs with varied graph size

is necessary to reduce the searching cost of RPQs in parallel. We also observed that
our approach reduced the average response time around 45%, 40%, 55%, and 120%
comparing to TRL approach in case of Alibaba, Yago, Freebase, and the synthetic
graph, respectively.

Figure 5 shows the comparison of the response time between our method and other
methods with varied the size of the graph. The smallest graph has around 2K nodes
and 38K edges, and the largest graph has 64K nodes and 1.2 million edges. As the
result, the scaling of the implementation using the proposed method achieved a better
performance with less response time than AUT and TRL approaches. Specifically, in
the case of largest graph size, our method reduced the average response time around
120% and 24% comparing to AUT and TRL approaches, respectively.

6.2.3 Summary

From the experimental results, we find the following. (1) Our estimation method
obtains high accuracy and scales well with the size of graphs. (2) The estimation
accuracy on the graphs with a high average degree (e.g., greater or equals than 16) is
higher than the ones having lower average degree. (3) Our proposedmethod is efficient
when it is applied to parallel RPQs evaluation on large graphs.

7 Conclusions and future work

We proposed a novel approach for estimating the searching cost of RPQs on large
graphs with cost functions based on the combinations of the searching cost of unit-
subqueries. By exploiting unit-subqueries, we defined an Unit-Subquery Cost Matrix
(USCM) which consists of all possible unit-subqueries of every RPQs. According to
USCM, we provided cost functions for estimating the searching cost of a given RPQ.
Experimental results illustrated the proposed method can estimate searching cost for
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RPQs with high accuracy which is approximately 87% on average, and USCM-based
approach outperforms traditional ones in the aspect of parallel RPQs evaluation.

We envision several directions of our work, one of them is extending the estimation
of the searching cost for highly complex RPQs with respect to unbounded recur-
sion. Besides, motivated by the absence of benchmarks devoted to RPQs, we want to
develop a benchmark for estimating cost as well as evaluating RPQs. Moreover, we
will focus on how to apply this approach for solving RPQ problems in various fields
such as transportation analysis under disaster situations and social network analysis
for recommendation systems.
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